
The ParcTab Ubiquitous Computing Experiment

Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold,
Karin Petersen, David Goldberg, John R. Ellis and Mark Weiser

The PARCTAB system integrates a palm-sized mobile computer into an office network. This
project serves as a preliminary testbed for Ubiquitous Computing, a philosophy originating
at Xerox PARC that aims to enrich our computing environment by emphasizing context sen-
sitivity, casual interaction and the spatial arrangement of computers. This paper describes
the Ubiquitous Computing philosophy, the PARCTAB system, user-interface issues for small
devices, and our experience developing and testing a variety of mobile applications.

1 INTRODUCTION

For the past 30 years the operating speed and component density of digital electronics has
steadily increased, while the price of components has steadily decreased. Today, designers
of consumer goods are incorporatingdigital electronics into more and more of their products.
If these trends continue, as we expect they will, many everyday items will soon include some
form of computer.

Although computers are becoming ever more common in appliances such as VCRs, mi-
crowave ovens, and personal digital assistants, they remain largely isolated from one another
and from more powerful desktop and laptop machines. We believe that in the future many
computers will provide more valuable services in combination than they can in isolation.
Ideally, many kinds of specialized machines will work together via networks to let users ac-
cess and control information, computation and their physical and electronic environments.

In the Computer Science Laboratory (CSL) at Xerox PARC we have established a num-
ber of research projects to explore this vision, which we call Ubiquitous Computing. This
paper presents the results of the PARCTAB project, an experiment intended to clarify the de-
sign and application issues involved in constructing a mobile computing system within an
office building. The PARCTAB system provides a useful testbed for some of the ideas of the
Ubiquitous Computing philosophy, which is described briefly in the next section. The sys-
tem is based on palm-sized wireless PARCTAB computers (known generically as “tabs”) and
an infrared communication system that links them to each other and to desktop computers
through a local area network (LAN). Although technological and funding limitations forced
us to make numerous compromises in designing the PARCTAB hardware, nevertheless the
system, as described in Section 3, meets most of our design goals. Likewise the small size

1This work was supported by Xerox and ARPA under contract DABT63-91-C-0027. Portions of systems
described here may be patented or patent pending.

1

and low resolution of the PARCTAB displays requires an innovative user interface design to
allow efficient text entry and option selection. Our solutions are presented in Section 4.

A community of about 41 people at Xerox PARC take part in the system’s operation and
in PARCTAB application development, which are covered in some detail in Sections 5 and
6. To date, we have developed and tested more than two dozen PARCTAB applications that
allow users to access information on the network, to communicate through paging and e-
mail, to collaborate on shared drawings and texts, and even to monitor and control office
appliances. Descriptions of the various PARCTAB applications as well as data on users’ ex-
periences with them are given in Sections 7 and 8, respectively.

By designing, constructing, and evaluating a fully operational mobile computing sys-
tem and developing applications that exploit its unique capabilities, we have gained some
insight into the practical benefits and real-world problems of such systems. In the paper’s
final section, we collect these lessons and present some of the many intriguing ideas that the
PARCTAB project has spawned for future work in Ubiquitous Computing.

2 UBIQUITOUS COMPUTING

As inexpensive computers add limited intelligence to a wider variety of everyday products,
a new model of computing becomes possible.

2.1 The Ubiquitous Computing Philosophy

This new technology aims for the flexibility of a far simpler and more ubiquitoustechnology:
printed text. Depending on the need, print can be large or small, trivial or profound, verbose
or concise. But though print surrounds us in myriad forms, it does not dominate our thoughts
the way computers do today. We do not need to log on to road signs to use them or turn away
from our colleagues to jot notes on a pad of paper. Similarly, ubiquitous computers would
demand less of our concentration than present commercial computer interfaces that require
users to sit still and focus their attention. Yet through casual interaction they would provide
us with more information and all the advantages of an intelligently orchestrated and highly
connected computer system.

Creating such an intuitive and distributed system requires two key ingredients: commu-
nication and context. Communication allows system components to share information about
their status, the user and the environment—that is, the context in which they are operating.
Specifically, context information might include such elements as:

� The name of the user’s current location;

� The identities of the user and of other people nearby;

� The identities and status of the nearby printers, workstations, Liveboards, coffee ma-
chines, etc.;

� Physical parameters such as time, temperature, light level and weather conditions.

The combination of mobile computing and context communications can be a powerful
one [40; 30; 28; 32; 33; 31]. Consider, for example, an employee who wants to show a set
of figures to his manager. As he approaches her office, a quick glance at his tab confirms
that the boss is in and alone. In the midst of their conversation, the employee uses the tab

2

to locate the data file on the network server and to request a printout. The system sends his
request by default to the closest printer and notifies him when the job is finished. Many more
examples of the Ubiquitous Computing philosophy are presented in Mark Weiser’s article
“The Computer of the 21st Century” [39].

2.2 A Ubiquitous Computing Infrastructure

Attaining the goals of Ubiquitous Computing will require a highly sophisticated infrastruc-
ture. In the ideal system, a real-time tracking mechanism will derive the locations and op-
erational status of many system components and will use that context to deliver messages
more intelligently. Users will be able to choose from among a variety of devices to gain
mobile, high-bandwidth access to data and computational resources anywhere on the net-
work. These devices will be intuitive, attractive and responsive. They will automatically
adapt their behavior to suit the current user and context.

Although one can speculate about the design of a future system, unfortunately the com-
ponents needed to build such an infrastructure have yet to be invented. Current processors
and microcontrollers are slow and power-hungry compared to their likely descendants 10
years from now. We reasoned that we could bridge this technology gap by constructing an
operational system that resembles an optimal design. Despite the inevitable compromise of
some engineering characteristics, we could then use the system to assess the advantages and
disadvantages of Ubiquitous Computing as if we had glimpsed into the future.

It is impossible to predict the range of device forms and capabilities that will be available
a decade from now. We therefore based our device research on size, a factor that is likely to
continue to divide computers into functional categories. A useful metaphor that highlights
our approach is to consider the traditional English units of length: the inch, foot and yard.
These units evolved because they represent three significantly different scales of use from a
human perspective.

� Devices on the inch scale, in general, can be easily attached to clothing or carried in
a pocket or hand.

� Foot-sized devices can also be carried, though probably not all the time. We expect
that office workers will use foot-sized computers similar to the way that they use note-
books today. Some notebooks are personal and are carried to a particular place for a
particular purpose. Other notepads are scattered throughout the work environment
and can be used by anyone for any purpose.

� In the future office there will be computers with yard-sized screens. These will prob-
ably be stationary devices analogous to whiteboards today.

2.3 Ubiquitous Computing Experiments at PARC

Researchers at PARC have built computer systems at the three scales described above [41]:

inch PARCTAB, a palm-sized computer;
foot PARCPAD, an electronic notepad;
yard Liveboard, an electronic whiteboard.

3

These experimental devices use different mechanisms for communication and compu-
tation within the building’s distributed system. The Liveboard is not mobile and connects
directly to an Ethernet. Our mobile devices extend battery life by using low-power commu-
nication technologies: infrared (IR) signalling for the PARCTAB and near-field radio [8] for
the PARCPAD. We have also investigated how operating system design can reduce power
consumption [43] and this is well suited to mobile computers. The PARCPAD and Liveboard
are described elsewhere by Kantarjiev [17; 12] and Elrod [9].

Our goals for the PARCTAB project were:

� To design a mobile hardware device, the PARCTAB, that enables personal communi-
cation;

� To design an architecture that supports mobile computing;

� To construct context-sensitive applications that exploit this architecture;

� To test the entire system in an office community of about 41 people acting as both
users and developers of mobile applications.

3 PARCTAB SYSTEM DESIGN

We set several design goals for the PARCTAB hardware. It had to be physically attractive
to users, compatible with the network, and capable of modifying its behavior in response
to the current context. We believed that in order to fulfill these goals the PARCTAB had to
be small, light and aesthetically pleasing enough that users would accept it as an everyday
accessory. It needed reliable wireless connectivity with our existing networks and a tracking
mechanism capable of detecting its location down to the resolution of a room. It had to run
on batteries for at least one day without recharging.

We also believed that the PARCTAB’s user interface had to let people make casual use
of the device, even if they had only one free hand. The screen had to be able to display
graphics as well as text. We wanted users to be able to make marks and selections using
electronic ink, so the screen needed touch sensitivity with a resolution at least equal that of
the display. Furthermore, the cost of the hardware and the network infrastructure had to be
within reasonable limits so that we could deploy the system for lab-wide use.

Cost was not the only limitation on our design options. Some factors were also limited
by available technology, such as the device’s communication bandwidth, display resolution,
processor performance and battery capacity.

3.1 PARCTAB Mobile Hardware

We carefully weighed the limitations and requirements above when making the engineer-
ing decisions that shaped the final appearance (Figure 1) and functionality of the PARCTAB

hardware. One primary trade-off balanced weight, processor performance, and communi-
cations bandwidth against battery life. We also had to strike a compromise between screen
resolution and the device’s size, cost and processor speed.

4

3.1.1 Packaging

We believed an ergonomic package would be essential if people were to carry and use the
tab regularly. We thus enclosed the PARCTAB in a production-quality custom plastic case
with a removable belt clip. The tab is about half the size of current commercial personal
digital assistants (PDAs), at 10.5cm x 7.8cm x 2.4cm (4.1in x 3.0in x 0.95in). It weighs
215g (7.5oz). We designed the tab so that users could choose either one-handed use with
buttons or two-handed use with a stylus. Because the package is symmetric, the tab can be
used in either hand—an important feature for left-handers who wish to use the stylus. To
convert from right- to left-handed use, the user executes a setup command that rotates the
display and touch-screen coordinates by 180 degrees.

3.1.2 Display and Control Characteristics

We found that commercially available touch-sensitive displays provided adequate resolution
for our needs. We chose a 6.2cm x 4.5cm (2.4in x 1.8in) LCD display with a resolution of
128 x 64 monochrome pixels.

The PARCTAB is most easily operated with two hands: one to hold the tab, the other to
use a passive stylus or a finger to touch the screen. But since office workers often seem to
have their hands full, we designed the tab so that three mechanical buttons fall beneath the
fingers of the same hand that holds the tab (see Figure 1), allowing one-handed use. The de-
vice also includes a piezo-electric speaker so that applications can generate audio feedback.

Figure 1: The PARCTAB mobile hardware

5

3.1.3 Power Management

Power is the overriding concern that drives most of the design decisions of most small elec-
tronic devices, and the PARCTAB is no exception. With more power, there could be faster
communication over longer distances, higher-resolution displays, and faster processors. But
existing battery technology places stringent limits on the power available for such small
components.

We found the prismatic (rectangular) Nicad cell to be the most suitable battery technol-
ogy given our size, weight and performance goals. Four cells were sufficient to provide a
rechargeable power source for the tab while meeting all the packaging requirements. We de-
signed the core of the device around a 12MHz, 8-bit microcontroller (87C524), an Intel 8051
derivative, for two reasons. First, its on-board EPROM, RAM and I/O ports ensured a com-
pact design. But equally important, this processor can be programmed to enter a low-power
mode. The PARCTAB takes advantage of this mode when idle in order to extend battery life.
The display, touch screen, additional RAM and the communication electronics can also be
powered down by the microcontroller.

During normal operation a tab consumes 27mA at 5V. In low-power mode it consumes
less than 30�A. We considered nominal use to be 10 minutes per hour, eight hours per work-
ing day. In operation, however, we found that the one-day use requirement was easily met.
In fact, using a battery storage-capacity of 360mAh, the typical tab need only be charged
once per week. A smaller battery may suffice, in which case we estimate that the PARCTAB

could be reduced to one-third of its current weight and volume if it were produced today by
a commercial electronics company instead of a research lab. We anticipate that within a few
years the functions of the PARCTAB probably could be put into a watch.

3.2 PARCTAB Communication

Limited space and power constrained our choice of a wireless communication technology to
just two options: radio and infrared (IR). We chose 850nm IR to exploit the small, inexpen-
sive IR components that were commercially available. These offered low power consump-
tion at the modest communication speeds of 9600 and 19200 baud. Because IR signals are
contained by the walls of a room, this technology also made it easier to design a cellular sys-
tem. Moreover, IR communication is unregulated. A radio link would have required more
space, higher power equipment and potentially government operating licenses.

We decided that a cellular system [5] would best handle the competition for bandwidth
that inevitably would arise in a building-wide system supporting many users. By creating
small, room-sized communication cells (nanocells), we could minimize the communication
distance from the hub to the mobile user, reducing power needs concomitantly. Since the
radiated signal would be blocked by walls, messages would be more secure than if they
were broadcast widely. Users are also less likely to interfere with one another’s signals in a
cellular system, although some situations—such as heavy tab use during a break in a large
meeting—can still place large loads on the IR transceivers. Finally, small cells enable the
system to pin down a user’s location to the resolution of a room.

The tab infrared network [1; 27] thus consists of nanocells defined by the walls of a room
surrounding an IR transceiver. Large open rooms and hallways may also support nanocells
if transceivers are carefully placed out of communication range of each other. Transceivers
connect to a LAN through the RS-232 ports of nearby workstations.

6

3.2.1 Transceiver Design

A transceiver serves as a communication hub for any PARCTABs located in its particular
cell. Typically its communication radius is about 20 feet—less if limited by the walls of an
office. The transceiver hardware performs numerous functions in addition to transmission
and reception, including:

� Coding and decoding infrared packets;

� Buffering data;

� Executing link-level protocol checks (e.g., format or checksum);

� Providing a serial interface to a workstation’s RS-232 port;

� Indicating visually its communication status.

We designed the transceiver conservatively to ensure reliable communication. For trans-
mission, two dozen IR emitters are placed at 15 degree intervals on a circular printed circuit
board. For reception, two detectors provide a total viewing angle of 360 degrees (Figure 2).
The transceiver is designed to be attached to a ceiling, preferably in the middle of a room
as this usually gives an unobscured communication path over the required area. But since
transceivers and PARCTABs can sense infrared light reflected from surfaces, it is not neces-
sary that there be a line of sight between the two for them to communicate. Thus a single
transceiver usually covers a room completely.

IR Emitters

IR Detectors

Figure 2: The PARCTAB transceiver

7

3.2.2 Local Area Network Interface

We found the approach of extending an existing LAN to provide wireless nanocellular com-
munication very attractive for a number of reasons. The additional cost is small because
the LAN wiring already exists. Most offices in our building are equipped with at least one
workstation that has a spare RS-232 port. We thus had to string only a small amount of addi-
tional phone cable to connect ceiling-mounted transceivers to our UNIX workstations and,
through them, the ethernet. And since well established communication mechanisms already
exist between workstations in commercial distributed systems, we did not have to reinvent
that infrastructure. Transceivers could be attached to networks of other platforms, such as
the PC or Macintosh, in much the same way.

3.2.3 Transmission Control

The decision to use infrared communication prompts a further design issue: how to enable
many PARCTABs to share the medium? Conventional IR detectors have difficulty tuning
narrow frequency ranges, ruling out the possibilityof using frequency-division multiplexing
to divide the bandwidth into several subchannels. We thus chose a simple digital packet-
contention scheme that shares the medium using time-division multiplexing.

In this scheme, all data is bundled into packets formed by the baseband modulation of
an IR carrier into a sequence of pulses. The pulses are uniform— all have a duration of
4�s—but the gaps between them are not. The variable duration of the silence between pulses
encodes the data bits. The durations of the gap encoding a logic 1, logic 0, packet-start syn-
chronization, and data-byte synchronization are all unique and may be decoded using a sim-
ple algorithm. By defining data as the absence of a signal, this technique minimizes power
consumption, since the infrared carrier is switched off for most of a transmission.

The link-layer packets are divided into several fields, as shown in Figure 3 below. The
packet type field is always sent at 9600 baud, and a subfield of the packet type defines the
speed at which the rest of the packet will be transmitted. This permits variable speed trans-
mission and allows future high-speed systems to remain backward-compatible. The present
system transmits packets at 9600 and 19200 baud.

SOURCEDESTINATION DATA PAYLOAD CSLENGTH

1 1 4 4 3-247 2
(0-255)

PKT
TYPE

Figure 3: Format of the data fields for a link-layer IR packet (lengths in bytes).

The second field contains the length of the packet. Packets vary in length from 14 bytes
for most uplink packets to a maximum of 256 bytes for a downlink packet. Next follow
unique 4-byte addresses of the destination and source devices, up to 247 bytes of payload
data and finally a 2-byte checksum.

We assumed that communications traffic inside a cell would normally be low since ap-
plications are driven by user-generated events, such as button clicks. We thus expected a
screen update to be followed by a relatively long silence while the user made the next se-

8

lection. Because we also assumed that small packets generated under lightly loaded condi-
tions would be delivered promptly, we chose to use a symmetric non-persistent carrier-sense
multiple-access (CSMA) protocol to provide access to the IR channel. This protocol sim-
ply uses carrier sense and a random-exponential backoff whenever the channel is busy. It
does not wait for a packet currently occupying the channel to complete before entering a
new backoff period [34].

3.2.4 Reliability and Interference

The PARCTAB system cannot detect packet collisions because any IR transmission creates
such a powerful signal that it saturates the local receiver, making it impossible to detect a
packet sent simultaneously by another device. Mobile hardware can avoid losing link-layer
packets by setting a bit in the packet type field that requests an acknowledgment. When a
transceiver sees the request bit set, it immediately transmits a reply back to the sender. In a
multiple-access network this type of acknowledgment is quite reliable, since the fact that the
request was received implies that there was no contention and therefore the acknowledgment
should also not encounter contention [36]. A PARCTAB sets the request bit for some types
of tab packets—user events, for example—and then, if no acknowledgment arrives, resends
the packet a fixed number of times until finally generating an audible alarm to the user. In
principle, downlink packets sent from a transceiver to a PARCTAB could also use this mech-
anism. Instead, as described in Section 7, we ensure downlink reliability at a higher level of
protocol.

When a PARCTAB is in view of two rooms—when in a hallway, for instance, with doors
opening into two cells—both cell transceivers might acknowledge event packets simulta-
neously, corrupting the acknowledgment signal at the PARCTAB. To avoid this problem
transceivers that are close enough to interfere with each other are given different network
addresses and only acknowledge packets addressed to them, although they still transfer all
the packets that they receive to the LAN. Whenever a PARCTAB enters a new cell the system
notices events that it produces (e.g., beacons or button clicks) and instructs the tab to use a
new transceiver address.

4 USER-INTERFACE DESIGN FOR PALM-SIZED COMPUTERS

As we developed applications for the PARCTAB, it became clear that a traditional user in-
terface designed for the 640 x 480-pixel color display of a typical PC or workstation would
not work well on the PARCTAB’s 128 x 64-pixel monochrome display [26; 42]. Indeed, the
PARCTAB’s tiny screen, offering less than half the area of most PDA displays, forced us to
devise innovative ways to select, display and enter information in a very limited space. As
advancing technology produces higher resolution displays that can pack more information
onto a small screen, some of the problems we faced will undoubtedly disappear. But text
and symbols can shrink only so much before they become too small to read. Also, as dis-
plays increase in resolution, new devices will probably get commensurately smaller. Many
of the user-interface solutions we describe below will thus remain relevant.

4.1 Buttons vs. Touch Screen

Since the PARCTAB is well suited for casual, spur-of-the-moment use, we did not want to
compel users to free both hands to operate the device. The user interface thus had to allow

9

users to control applications with the device’s three buttons, its touch screen or a combi-
nation of both. This requirement complicated the interface design because a user selecting
an item on the screen with the buttons alone must then be presented with an intermediate
screen allowing her to invoke an operation on that item. Consequently, application devel-
opers must decide whether to require two-handed use (of both stylus and buttons) or whether
to increase the number of screens in their program so that all the functions can be accessed
via the buttons.

We found one convention that seems to solve this problem best, and developers incor-
porated it into several tab applications. It works as follows: on clicking the middle push-
button, a menu of commands pops-up. The top and bottom buttons then move the cursor up
and down, while a second click of the middle button selects the command on which the cur-
sor currently rests. On screens that display scrolls or lists of text, the top and bottom buttons
scroll the list up or down, respectively. If menus are designed intelligently, then users must
usually just click the middle button twice to execute the most common action. Two-handed
users can press an on-screen button to pop up the menu and can then point with the stylus to
select an item directly.

We have also settled on a preferred interface style for using the push-buttons and the sty-
lus to navigate a tree data-structure. The operator uses the stylus to navigate down through
the hierarchy one screen at a time and clicks the middle button to navigate upward. This
method works efficiently because users descending the hierarchy must at each level make
a choice, a task performed simplest with the stylus. Ascending the tree, on the other hand,
requires a user to repeat the same operation over and over, a task well suited to repeated
push-button action.

4.2 Spurious Event Prevention

Because the PARCTAB applications often run elsewhere on the network there can be modest
delays between a button click or screen touch and the update of the screen 5. The delay be-
tween event and response can occasionally cause errant behavior in the user interface. Con-
sider the case in which a menu contains a button icon that selects another screen with its own
button icon in a similar position. A user tapping the first button with the stylus might create
multiple pen-events, either by unintentionally bouncing the pen on the touch surface or by
impatiently tapping the button twice. The initial event will trigger a transition to the next
screen, but the latter events could then cause additional, unwanted selections. We solved
this problem by adding a field called an epoch to the event packet structure. Every time an
application transmits a screen change, it also increments the epoch number in the PARCTAB.
Any events that were in the application input queue with a previous epoch number can now
be discarded, thus preventing any spurious transitions.

4.3 Text Display

We anticipated that it might be difficult to read text on the PARCTAB because its small dis-
play can show only eight lines of 21 (6 x 8-pixel) characters. In practice, this proved not to
be a problem, as our popular e-mail application exemplifies. Word-wrap and hyphenation
algorithms can often fit three or four words across the screen. The 8-line display is also small
enough to update quickly despite the limited communication bandwidth.

10

Users scroll through text either by clicking the top or bottom push-buttonsor by touching
the upper or lower half of the display. The experience is similar to reading a newspaper col-
umn through a small window that can be moved up or down by the flick of a pen. Although
this is relatively efficient, it is nevertheless often useful to filter text information before it is
displayed. For example, the PARCTAB e-mail application replaces lengthy message headers
with a compressed form that includes only the sender and an abbreviated form of the subject
field.

4.4 Text Entry

We experimented with two methods of text entry: graphic, onscreen keyboards and Unistrokes,
a novel approach to handwriting recognition. Unistrokes [14] is similar to Graffiti, a system
marketed subsequently by Palm Computing.

4.4.1 Keyboard Entry

An onscreen keyboard requires both an array of graphic keys arranged in typewriter format
and an area to display text as it is entered. We have experimented with several layouts. The
first presents key icons across lines 2 through 8 of the screen and displays the characters that
have been “typed” on line 1, which scrolls left and right as necessary to accommodate mes-
sages longer than 21 characters. A delete-last-character function bound to the PARCTAB’s
top push-button allows easy correction of mistakes. One of the other push-buttons serves as
a carriage return that terminates an entry. We found that users could enter about two charac-
ters per second using this keyboard layout. Experiments with smaller keyboards show that
they lower typing accuracy.

a b c d e f g h i j k l m

n o p q r s t u v w x y z

Figure 4: The Unistroke alphabet

4.4.2 Unistrokes

Techniques for handwriting recognition have improved in recent years, and are used on some
PDAs for text entry. But they are still far from ideal since they respond differently to the
unique writing characteristics of each operator. We have experimented on the PARCTAB

with Unistrokes, which depart from the traditional approach in that they require the user to
learn a new alphabet—one designed specifically to make handwriting easier to recognize.

For each letter in the English alphabet there is a corresponding Unistroke character which
can be drawn in a single pen stroke. The direction of the stroke is significant (Figure 4). To
minimize the effort required to learn to write in Unistrokes, all Unistroke characters are ei-
ther identical to English letters (e.g., L, S and Z) or are based on a characteristic feature of

11

the corresponding English letter (e.g., the cross of T). We found that most people can learn
the Unistroke alphabet in under an hour.

Because Unistroke characters are directional and better differentiated than English let-
ters, they require less processing to recognize reliably. Because the characters are single
strokes, users can draw each Unistroke character right on top of the previous one, using the
entire screen. Thus the strokes themselves need not appear on the writing surface, but instead
the PARCTAB neatly displays the corresponding English characters. Practiced Unistrokers
found the simplicity and speed of text entry very attractive.

4.5 Option Selection

The PARCTAB’s small screen makes it difficult to present users with a long list of options.
We tried a number of different methods.

4.5.1 Text and Icon menus

The PARCTAB screen size places rather severe limits on the number of text or icon options
in a menu. Vertically, eight lines of text fit onscreen. Spreading three text buttons per line
across the display increases the number of selections to 24. Arranging 16 x 16-pixel icons in
an uncluttered format yields about 15 options per screen (see Figure 1). Larger lists require
alternative approaches.

4.5.2 Scrolling Lists

Some applications, including Tabmail and Arbitron (Figure 5), present choices in a scrolling
list with each option represented by a single line of text. The item on which the cursor rests
is highlighted; options that are unavailable because they do not make sense in the current
context are crossed out. As users press the top and bottom push-buttons to move the cursor
up and down, the list scrolls as necessary to expose more options.

Figure 5: A screen from the PARCTAB Arbitron application

We considered using the “proportional” scroll bars common in PC user interfaces to al-
low fast touch-screen navigation of large ordered lists on the PARCTAB. This scheme takes
the horizontal or vertical position of a screen touch as a percentage of the total screen dimen-
sion, then moves the cursor to a similar position in the long list of options. Unfortunately,
we found that the resolution of the touch-screen restricts accurate selection to lists smaller

12

than the maximum number of pen positions that can be resolved. The PARCTAB can resolve
128 horizontal positions per line.

We also chose not to use this type of interface element because it demands continuous
display feedback for each movement of the pen. Typically the feedback would be generated
remotely, rather than by the tab itself, because the application generating the feedback is
running elsewhere on the network. The contention that would result between pen events
and continuous display updates would make poor use of the communication bandwidth.

4.5.3 Elision and Incremental Searches

We used the PARCTAB to evaluate the efficiency of two somewhat more sophisticated meth-
ods for selecting one item (such as a name or word) from a large ordered list (such as a di-
rectory or dictionary): elision and incremental searching. Elision is based on k-ary search
techniques. The system divides the list into 15 portions of roughly equal size and displays
the first item in each section, followed by an ellipsis (Figure 6). The display ends with the
last item in the list.

Figure 6: A screen from the PARCTAB locator application

The user selects the target item if it is displayed. Otherwise, selecting any ellipsis re-
draws the screen to show an expansion of the selected region of the list into 13 smaller por-
tions as before. (The very first and last items in the complete list are always displayed so that
users can navigate back to other regions.) The user continues “zooming in” on a particular
region until the target item appears.

Elision is reasonably efficient. Because the PARCTAB screen can display 16 abbreviated
words with ellipses between them, users need make at most log

16
N selections to reach any

item, where N is the size of the list. To select one item among one million, for example,
requires no more than six selections. The mean word length in the American Heritage on-
line dictionary, containing 84433 words, is 8.9 characters. A user typing a word from this
dictionary on a graphic keyboard must thus make 8.9 selections, on average. Elision, by
comparison, can bring up any word in this dictionary with just four selections.

Incremental search techniques, implemented in the PARCTAB dictionary application,
can do nearly as well. Here the user types the first few letters of the item. With each letter en-
tered, the application narrows the list of possible matches and displays the closest eight. We
found that this method identified the desired word after 4.3 characters on average—thus 5.3
selections, since one more tap is needed to choose the correct match from the eight choices.

13

PARCTAB applications have made successful use of both elision and incremental searches.
We observed advantages and disadvantages for each. Elision is the more general method,
since it performs well even when the ordered list has no special properties. It also usually
requires fewer selections–especially if it is refined so that the system adjusts the size of the
subsections to fall between guide words that have been frequently selected. Many PARCTAB

users object to elision, however, because it demands hard thinking to pick the appropriate
ellipsis.

5 PARCTAB SYSTEM ARCHITECTURE

A multilayer system architecture integrates the PARCTAB hardware into the PARC office
network so that network applications can easily control and respond to mobile devices based
on the devices’ current context. Although the PARCTABs themselves behave more like ter-
minals than independent computers, they do execute local functions in response to remote
procedure calls. PARCTABs also generate events that are then forwarded by transceivers and
the infrared gateways that manages them to processes called tab agents, which run on net-
work machines. The agents keep track of the mobile tabs and link them to workstation-based
applications. PARCTAB applications are generally event-driven, much like X11 or Macin-
tosh programs. Figure 7 illustrates relationships among PARCTABs, transceivers, gateway
and agent processes, and applications.

Developers can link into their applications a code library that hides the details of PARCTAB

tracking, message routing, and error recovery. Of course, any application can obtain a tab’s
current location as needed so that the program can modify its behavior appropriately. We
developed the PARCTAB system in the Unix programming environment (SunOS 4.3.1) run-
ning on SparcStation 2 connected by an ethernet. Communication between Unix processes
is achieved using Sun RPC.

5.1 PARCTAB Processing Capabilities

One perennial issue in distributed systems design is the question of partitioning: how much
computation should be performed by the mobile devices, and how much by larger computers
fixed to the network. One alternative is to execute much of an application’s interface locally
in the mobile client, similar to the way America Online, Compuserve and Prodigy put most
of their user interface onto users’ PCs. At the extreme defined by PDAs, a tab might even
run whole applications and communicate only occasionally with the network.

Although this approach might reduce the load on the IR channel, it requires a fast pro-
cessor and much memory. But using today’s technology, the power requirements of state-
of-the-art CPUs cannot be satisfied by conventional batteries of reasonable size and weight.
With a 12MHz processor and 128Kb of memory, the PARCTAB is roughly equivalent in com-
putational power to a PC from the early 1980s. To date, we have thus used tabs primarily
as input/output devices that rely on workstation-based applications for most computation.
In this model the mobile computer becomes a display device similar to a more conventional
graphics terminal. Recently, however, we have experimented with a few applications that
execute solely in the tab: taking notes using Unistrokes, for example, and browsing files
downloaded from the network.

14

XEROX v PARC

TAB 4
XEROX v PARC

XEROX v PARC

TAB 3
XEROX v PARC

XEROX v PARC

TAB 1
XEROX v PARC

 Roy’s Office

 Bill’s Office

 Conference Room

ParcTab Transceiver
Infrared
Gateway Ethernet

ParcTab
Agent Applications

IR
GATEWAY

IR
GATEWAY

IR
GATEWAY

LOCATE

VOTE

CALENDAR

MAIL

SHELL

VIDEO

DRAW

MEMOS

SHELL

CALENDAR

VOTE

SHELL

MAIL

SHELL

TAB 1
AGENT

TAB 4
AGENT

TAB 3
AGENT

TAB 2
AGENT

Figure 7: The PARCTAB system architecture

5.1.1 Tab Remote Procedure Call Mechanism

A simple communication mechanism called a tab remote procedure call (T-RPC) allows ap-
plications to control various PARCTAB resources, such as the display, touch screen, local
memory and tone generator, while remaining oblivious to a tab’s location and any underly-
ing communication errors. This mechanism has been incorporated into a library of proce-
dures available to application designers. When an application makes a call into the library,
the library assembles a request packet in a format defined by a request/reply protocol.

FUNCTION
PAYLOAD

TYPE ENDLENGTH MORE FUNCTIONS
SEQUENCE

NUMBER

1 1 1 11 0 - 242

CODE PARAMETERS

Figure 8: Format of IR packet data payload as used by the request/reply protocol (lengths
in bytes)

The request/reply protocol is contained in the data payload of the link-layer packet (Fig-
ure 8). The tab supports a set of about 30 function codes, several of which can be combined
into a single packet. For efficiency multiple function-requests can be batched into a single
packet under program control. A few examples of PARCTAB functions are: display text,
display bits, generate tones, set epoch and wake up.

15

An application delivers the request packet to a tab’s agent process, which forwards iet in
turn to the tab. The application then waits for a reply. When the PARCTAB finishes executing
the request, it returns a reply packet to the application containing an indication of its success
and any appropriate results.

Sometimes a request or reply packet will be lost, or the system will be temporarily unable
to determine the location of a tab. In that case, the agent will automatically time-out the
reply and will retry the request at intervals defined by an exponential back-off algorithm.
The back-off algorithm takes into account whether the tab is detected by the network or not,
and whether the tab is free or busy executing another T-RPC request.

Only when a request is matched up with a corresponding reply will the the application
continue. The agent increments the sequence number for each new request to ensure that
retried packets do not inadvertently execute a request twice. The agent likewise discards
duplicate replies that result from retries or detection by multiple transceivers. Figure 9 shows
the complete path taken by a T-RPC call made from an application to a tab and back again.

SUN RPC
SUN RPC

SUN RPCSUN RPC

SUN RPC

IRGATEWAYAPPLICATION AGENT TAB

AGENTAPPLICATION IRGATEWAY TAB

1
2

3

4

5

6

7

8

1

2

3

4

5

6

REQUEST

REPLY

EVENT

LINK-LAYER
ACK

T-RPC (Application to Tab Communication)

Event Notification (Tab to Application Communication)

Figure 9: The path taken by a T-RPC call made from an application to a tab.

5.1.2 PARCTAB Events

When a PARCTAB user presses a button or touches the screen, the device transmits an event
signal. The PARCTAB may also generate certain events autonomously, such as a low-battery
alert and a beacon. The beacon is a signal transmitted every 30 seconds, even when the de-
vice is idling in low-power mode, that allows the system to continue to monitor a PARCTAB’s
location when it is not active. A similar system has been used to locate people using Active
Badges [38; 11; 15]. The power cost of waking up a tab every 30 seconds to emit one packet
is not high and, in fact, we also designed the tab to listen for a moment after sending a bea-
con. If a wake-up request is received in this period the PARCTAB will power-up completely.
The system can thus deliver priority messages to the device even when it is not in use.

The packet format used to signal PARCTAB events is similar to that used in the request/reply

16

mechanism. The payload type field distinguishesevents, requests and replies. In event pack-
ets, the function code is replaced by the appropriate event code.

5.2 Infrared Gateway

The IR-gateway process controls one or more infrared transceivers connected to the serial
ports of a workstation. The gateway receives IR packets forwarded by transceivers and de-
livers them to tab agents. In the reverse direction, the IR-gateway receives packets from
an agent over a local-area network, encodes them for IR transmission and delivers them to
the appropriate serial port. The transceiver then broadcasts the packets over the IR medium
to any tabs within its cell. These packets are coded according to the request/reply protocol
described in Section 5.1.1.

The IR-gateway uses a name service to determine which agent shouldreceive each packet.
The gateway looks up the packet’s source addresses (i.e., the tab’s unique address) in the
name-service directory to obtain the network address of the corresponding agent. Each gate-
way process maintains a long-lived cache of agent network address so that it rarely needs to
use the name service.

The gateway also appends a return address and a location identifier to every packet it
sends to an agent. The location identifier is a short textual description (e.g., “35-2232”) of
the location of the transceiver that received the packet. Context-sensitive applications can
use the identifier in combination with centralized location databases and services to cus-
tomize their behavior.

In addition to its main functions, the IR-gateway performs configuration, error-reporting,
and error-recovery functions. Gateway processes also handle the flow control that matches
low-speed infrared communications with the high-speed local area network.

5.3 Tab Agent

For each PARCTAB there is exactly one agent process, which acts like a switchboard to con-
nect applications with tabs via IR-gateways. An agent performs four functions:

� It receives requests from applications to deliver packets to the mobile PARCTAB that
it serves;

� In the reverse direction, it forwards messages (along with location identifiers) from its
tab to the current application;

� It provides an authoritative source of tab location information for context-savvy ap-
plications;

� Finally, it manages application communication channels.

Since the agent is an intermediary on all messages, it has the most complete information
on the location of its tab. Even if the PARCTAB moves to a new cell, its agent will soon re-
ceive a beacon signal and update the tab’s location accordingly. Whenever the tab’s location
or status changes, the agent notifies a centralized location service [29] of the tab’s last known
location and its status: “interactive” if it is being used, “idle” if it is transmitting beacons but
no other events, and “missing” if the tab is out of sight.

17

An agent also manages which application is allowed access to its tab at a particular mo-
ment. Because the PARCTAB screen is so small, each application takes over the entire dis-
play. Although the tab may run many network applications over time, only one “current
application” can receive events from the tab and send it messages at a given moment. In our
system, a tab’s agent interacts with a special application called the “shell” (see Section 5.4)
to decide which application is current.

PARCTAB users can currently choose between two shells: the standard shell described
in the next section and an alternative described in Section 6.3.

5.4 Shell and Application Control

The shell is a distinguishedapplication that provides a user interface for launching or resum-
ing other tab applications.

A tab agent launches a shell when the agent is initialized, and if the shell exits, the agent
automatically restarts it. When it is current, the shell displays an application menu like that
shown in Figure 10 and waits for the user to select an application. If the user chooses to
launch a program, then the shell creates a new Unix process, registers it with the tab’s agent,
and finally instructs the agent to switch to the new application. Whenever a user suspends
or exits a PARCTAB application, the agent makes the shell the current application.

Figure 10: The top-level screen presented by the default Shell

The shell and other applications communicate with an agent through the AppControl
interface. This interface offers four procedures: register, suspend, resume, and quit. When
an application invokes the ‘suspend’ or ‘quit’ command, the agent switches control back to
the shell. When a user chooses to resume a suspended application or to switch to a newly
registered process, the shell calls the ‘resume’ procedure. If an application locks up in some
way, a PARCTAB user can transmit a special “agent escape” event that forces the agent to
suspend the current application and switch back to the shell.

The shell interface is based on user-customized screens. A screen contains active regions
(called buttons) and graphic labels, both of which may be represented by text and bitmaps.
Buttons invoke built-in actions: jumping to another screen, starting or resuming an applica-
tion, playing a tune over the PARCTAB speaker, etc.

When the shell is started it loads a user’s tabrc initialization file, or a standard config-
uration file if that is not present. The contents of the tabrc file define the buttons, bitmaps,
text and active areas that the shell draws on the PARCTAB’s top-level screen. The shell also

18

looks for a user’s tabrc-personal file and uses that to extend the menus described by the
tabrc file.

The grammar for the files consists of two parts, as shown below. The first section defines
the screen structure displayed on the tab. The second section contains a list of actions, such
as running a certain program, that the shell performs when it starts up. In this format, the
star (“*”) indicates items that can occur zero or more times; unstarred items occur exactly
once.

Tabrc ! Part*
Part ! (Initialize Action*)

! (Screens Screen*)
Screen ! (label: Widget*)
Widget ! (Text text x y invert)

(TextButton text x y Action)
(Bitmap bitmap-file x y)
(BitmapButton bitmap-file x y Action)

Action ! (Screen label)
(Beep duration octave note ...)
(Program program-args)
(Load tabrc-file)

5.5 Example of System Operation

To explain how the PARCTAB system operates in practice, consider the following example.
A user holding a PARCTAB in Roy’s office presses a button. The tab transmits a button event
packet and requests an acknowledgment.

A transceiver nearby picks up the signal, transmits an acknowledgment back to the tab,
and then forwards the event packet over the serial connection. The IR-gateway process lis-
tening to the serial line receives the packet, extracts its source address and looks up the net-
work address for the agent associated with the tab that sent the packet. The gateway stamps
the packet with the transceiver’s location identifier and its own network address, then sends
it off to the agent.

When the agent receives the message, it first verifies that this is not a duplicate of a pre-
vious packet. It then forwards the data to whichever application is current. The application
decodes the event and triggers a procedure call defined by the application developer.

If, for example, the application wants to update the PARCTAB display, then it calls a tab
library function and the transmission process reverses. First, the library procedure packs the
application’s display data into a T-RPC request packet and sends the request to the appro-
priate agent. The procedure also blocks the application until the call is completed. Next the
agent forwards the packet to whichever IR-gateway sent it a message last.

The IR-gateway encodes the request packet for transmission and sends it over the serial
link to a transceiver, which broadcasts the data over the IR medium. When the PARCTAB

to which the request is addressed receives the packet, it decodes and executes the functions
and then transmits a reply back to the IR-gateway indicating its success. The gateway duly
forwards the reply to the correct agent as described above.

19

6 DEVELOPING SYSTEM AND APPLICATION COMPONENTS

Members of the experimental community have built PARCTAB applications using three dif-
ferent approaches: Modula-3 libraries, Tcl/Tk and the MacTabbit system. Each offered dif-
ferent levels of access to the PARCTAB and its capabilities.

6.1 Modula-3

Modula-3 was a natural choice to build the first PARCTAB applications because it is also the
language for the PARCTAB’s system software [22]. It had many characteristics that recom-
mend it for both tasks, along with a number of shortcomings.

6.1.1 Modula-3 and System Development

Modula-3 is a relatively new language; it has a number of features that we believe are valu-
able in building large systems. These include garbage collection, light-weight threads, type
safety, and support for modules and object-oriented programming. PARC’s earlier successes
using Cedar (an ancestor of Modula-3) for systems work influenced our decision. In addi-
tion, we hoped that the combination of type safety and object-orientation would result in
higher quality, more reusable code.

Modula-3’s threads were important for our design because they simplified the architec-
ture of the IR-gateway and agent. Both are long running servers that interact with many
clients at the same time. Each client has its own dedicated thread: if one client doesn’t re-
turn promptly from a remote procedure call, others are not adversely affected. Building a
non-blocking server without threads would require either changing the remote procedure
call (RPC) mechanism to make it asynchronous or abandoning RPC in favor of some lower-
level communication mechanism.

6.1.2 Modula-3 and Application Writers

Modula-3 also facilitated the development of reusable libraries for tab application writers.
For example, we developed an object-based widget library to handle the user interface. The
object-oriented approach meant that each addition could build on previous work.

To simplify development work, we also built a PARCTAB simulator in Modula-3. This
program uses an X-window to mirror the PARCTAB display and mouse events to simulate
the PARCTAB pen and buttons. In many cases developers prefer the simulator to the mobile
hardware for program testing.

Although Modula-3 as a language met our needs well, the implementation we used had
a number of deficiencies. Modula-3 is still a young language, and so the programming envi-
ronment lacked certain tools, especially for debugging. In particular, there was no support
for debugging multiple threads: tracking down the deadlocks and race conditions that come
with multi-threaded programs was particularly challenging. Modula-3 also produced very
large runtime images which occasionally taxed even our 64MB workstations.

To compensate for this shortcoming we built support mechanisms into the tab system
software. Each process can write selected information to a log file, and system components
have network-accessible interfaces for debugging and control. Programmers can use these
interfaces to examine and set parameters, and to restart components. The IR-gateway, for
example, has extensive commands for checking the status of the transceiver hardware.

20

6.2 Code Libraries

We implemented a class-based hierarchy of composable widgets, loosely modeled on the
Trestle window toolkit [22], to provide routine components such as iconic and text buttons,
scrollbars, bitmaps, text labels, scrollable text areas, and dialog boxes. The PARCTAB’s very
small screen generally precludes overlapping of widgets, so our widgets do not need to do
the clipping required by a conventional window system. This greatly simplified the imple-
mentation.

We also built the TabGroup programming interface to support concurrent use of multiple
tabs by a single application. A group of tabs could act as a shared whiteboard or notepad,
for example, displaying what was drawn on one tab to all the others in the group. With Tab-
Group, a program can wait for all pending output to be delivered to all its tabs, synchronize
on input or other events, and detect tabs that have stopped responding. Using a single pro-
cess to control a group of tabs with standard interfaces provided by the tab programming
library is often easier than running a separate process for each tab and having the processes
communicate by application-specific RPC.

6.3 The Tshell and Tcl

Originally the only software available to support developers was the widget library. Devel-
opers used it much as they might use a language specific windowing toolkit like Xt [16] to
write X-windows applications. As a result, they had to focus on low-level properties of the
window system rather than on what they wanted to accomplish. Furthermore, for design-
ers implementing simple user interfaces the turn around time of writing an application in a
language like Modula-3 or C was too long. It became apparent that we had to provide fast
prototyping capabilities and support the implementation of simple user interfaces at a higher
level.

We created the Tshell [25], a PARCTAB-shell extended with a Tcl interpreter and a subset
of Tk [24], thus providing both a scripting language that supports remote communication
and a windowing toolkit. The choice of Tcl/Tk over other extension languages was based
mostly on three reasons:

1. Tcl/Tk is widely used.

2. Tk provides a complete set of building blocks for creating graphical user interfaces.
We could quickly select and implement a subset of widgets useful for the PARCTAB’s
small display size.

3. Tcl/Tk can be embedded into applications so that Tcl interpreters in different applica-
tions can exchange commands.

The design of Tab-Tk, the port of Tk to the Tab, focused on maintaining the natural look
and feel of the Tk widgets while exploiting the small area of the Tab display as much as
possible. We made several key observations and decisions during the port:

� The PARCTAB screen is too small to display multiple windows at the same time. Screen
management therefore employs the same “one window at a time” philosophy as other
tab applications.

21

� Because the Tab’s screen area is limited, it makes extensive use of menus. They must
be intuitive to use and have good response times.

� PARCTAB size and limited processing capabilities call for simplicity. The current im-
plementation of the Tk toolkit for the Tab therefore provides a core widget set of but-
tons, labels, menus, text, entries, frames and toplevel-windows. We left out such fea-
tures as the packer and canvas, a full-fledged drawing widget.

Tcl/Tk provides a high level language to rapidly prototype the graphical user interfaces
for PARCTAB applications and a communication platform that allows programs to exchange
commands with Tcl interpreters in other applications. In a matter of three months, members
of our community created a wide range of new applications, including a context-based re-
minder system, a remote controller for a presentation manager, a pan/tilt camera controller,
a remote editor for leaving notes on a workstation.

6.4 The MacTabbit system

Our colleagues at the Rank Xerox Research Centre (RXRC - formally called “EuroPARC”)
used a different approach to develop applications for the PARCTAB . The Apple Macintosh
is the computer of choice at RXRC, and tab users there wanted to access Macintosh applica-
tions. MacTabbit does this by arranging for the PARCTAB to control a small portion of the
Mac screen. It echoes updates in this region to the tab and sends pen and button events on
the tab to the Macintosh.

Using graphical application builders on the Mac such a Hypercard, users can quickly
prototype specialized Tab interfaces on the Mac Screen. When the interface works correctly,
it takes but a few seconds to move it on to a tab. Furthermore, once the connection has been
made to Hypercard, a user may select from a variety of Hypercard-based applications.

MacTabbit has provided an excellent prototypingenvironment for people unfamiliar with
the conventional tab programming environment, and it has drawn in developers who would
not normally have become involved. System performance was also good given the small
tab screen. An extension of the MacTabbit mechanism caches commonly used image frag-
ments in the tab, thus reducing bandwidth requirements and further improving performance.
RXRC has used the MacTabbit mechanism to prototype many tab applicationssuch as Forget-
me-not (see Section 7.1), an automatic diary and reminder system, and a media-space con-
troller (see Section 7.2.2).

7 A CLASSIFICATION OF PARCTAB APPLICATIONS

Three characteristics differentiate a tab and the kinds of applications that it supports from
traditional personal computers:

1. Portability: very small form factor, low-weight

2. Communication: low-latency interaction between users and system

3. Context-sensitive operation

22

Mobile Application Categories

Information Access
Communication
Computer Supported Collaboration
Remote Control
Local data/applications

Table 1: Mobile Application Categories

Our system represents context by a combination of factors: location, the presence of
other mobile devices, and the presence of people. Context also includes time, nearby non-
mobile machines and the state of the network file system. Traditional computer systems have
had access to much of this information, but they have typically not made much use of it.
Context can be used to adapt the user interface, criteria for extracting and presenting data,
system configuration, and even the effects of commands. Although context may be used to
present the options most likely to be chosen, a well-designed system would also allow a user
access to the full range of choices on request.

Some of the applications we describe are available on small commercial PDAs whose
size is comparable to that of a tab, but no PDA has the network infrastructure to support
the full range of applications supported by the PARCTAB. The combination of a wireless
network and the use of context make this system unique. A summary of the application cat-
egories we have experimented with is given in Table 1 and described in some detail in the
following sections.

7.1 Information Access

Access to information stored in our computer networks has become central to the way we
conduct our work. The PARCTAB IR network has provided a mechanism to make informa-
tion access independent of location. (Note that although all stored information is accessible
from any networked workstation, people tend not to use someone else’s machine.)

Each PARCTAB is linked to our local area network and so can retrieve any information
available through it or through remote networks connected to it. For example, the commonly
used weather program displays the current weather forecast (obtained from the Internet) and
the local temperature and wind-speed (obtained from a weather station on the local network).
PARCTAB users also have at their fingertips a dictionary, a thesaurus, a Unix file browser
and a connection to the World Wide Web. The WWW protocol is a popular way to access
information stored all over the Internet. Some care must be taken, however, to adapt the
information retrieved to the small PARCTAB screen.

PARCTAB applications have also been integrated with existing desk-top applications.
The PARCTAB calendar manager, for example, works with Sun’s calendar manager (“cm”),
already in use. An update to a user’s calendar either on a workstation or on a PARCTAB will
enable the data to be viewed on both systems.

The tab location-based file browser shows how context can be used to filter information.
Instead of presenting the complete file system hierarchy, it shows only files whose informa-

23

tion is relevant to the particular room it is in. Such a mechanism can be used to provide a
guided tour for a visitor or to provide information that is relevant to a location, such as the
booking procedure associated with a conference room.

More complex uses of context can be seen in tools built at RXRC such as Forget-me-
not [20; 23; 21; 19; 18]. This application provides a tab user with an automatic biography
of their life by remembering for each day details such as: where the person went in the of-
fice, whom they met, the documents they edited or printed, and any phone calls that were
made or received. The motivation behind this work is to provide an aid to our fallible hu-
man memories, a so called memory-prosthesis. The application operates by providing an
iconic interface that allows a user to search and filter the biography for a particular event.
For example, suppose a forgetful user were trying to find the name of a document that she
was editing when Mike came into the room a short while after the seminar last week. The
filter would be set up to show documents in use when Mike was around, on the day of the
seminar. As we seem to waste a great deal of our lives searching for things we have either
misplaced or information we have forgotten, Forget-me-not has the potential to help us work
more effectively.

7.2 Communication

Electronic mail has long been a popular communication tool for computer users. Mobile
access further enhances e-mail by increasing its availability.

Group meetings often account for a large amount of our work time, and so electronic
mail has been an important application for the PARCTAB. Access to e-mail during meetings
seems to have satisfied a genuine need.

The PARCTAB e-mail application could be extended to use context to generate filters
for displaying messages or notifying users of incoming mail. For example, all messages
might be delivered while a user is alone, but only urgent ones would be delivered during a
conference. In related work [13] a query language has been used to filter incoming mail.

7.2.1 Locator and Pager Operation

The PARCTAB system inherently provides a locator system, assuming that the person who
needs to be found is carrying a PARCTAB. In an office, people can use context to decide
whether to disturb a colleague, once they have been located [37]. For example, a person is
more likely to welcome interruptions alone in their office than while in a meeting. With the
PARCTAB system, a person may be paged unconditionally, or the importance of the page
can be assessed in association with the recipient’s context, so that the message will be either
delivered or delayed until the context is more favorable.

7.2.2 Media Applications

Another RXRC application is the “Communicator”, a context-sensitive media-space con-
troller. A description of the original media-space concept is given by Buxton [4] — a video-
conferencing mechanism based on an analog-switch controlled by workstations, allowing
users to establish video connections to various places in an appropriately wired building.
The tab has been used to enhance this facility through an application that will suggest the
easiest way to communicate with the person you wish to contact, and then help establish the
connection. Knowledge of where the recipient is situated is known to the system because

24

they are carrying a tab, the calling party only needs to know their name. If a media-space
terminal is not available, the application might suggest the best alternative: a phone number,
let you know they are actually next door, or offer to send an e-mail note from the tab screen.
More recent work at the University of Toronto has taken this work further and combined
Ubiquitous Computing with video in a reactive environment [3].

An application that pushes the PARCTAB’s communication abilities to their limits is me-
dia windowing. An otherwise unused IR channel can transmit one low-resolution frame of
slow-scan video in about 1.5 seconds. These images are very grainy because of the coarse
resolution of the PARCTAB screen and the limited bandwidth of the link. Nevertheless peo-
ple are remarkably good at recognizing faces and scenes, and the images are still useful. Fu-
ture systems with improved screens and higher bandwidth links could provide applications
for remote monitoring and mobile communication using sound and video.

7.3 Computer Supported Collaboration

People often gather with a common goal or interest, perhaps at a lecture, or else to arrive at
a common decision. Because the PARCTAB is small, it can easily be used in these collabo-
rative situations.

7.3.1 Group Pointing and Annotation

A PARCTAB used as a pointing device operates much like a mouse. However, a PARCTAB

can connect to different computers depending on its location.
Many PARCTABs can also connect to the same computer. Consider, for example, the

case in which a lecture is presented using a large electronic display such as a Liveboard (see
2.3). Each tab in the audience can control a different pointer on the display. We have built a
remote display pointer using the PARCTAB screen as both a relative and absolute positioning
tool: the user controls the location and motion of the pointer by moving a finger over the
PARCTAB’s touch surface1.

7.3.2 Voting

The PARCTAB can also be used when members of a group wish to arrive at a consensus,
perhaps anonymously. Even if anonymity is not important, simultaneous voting can collect
data that is unbiased by the voting process. If people vote in sequence, earlier viewpoints
inevitably bias later ones.

We have built a voting applicationcalled Arbitron for the PARCTAB system. It has proved
particularly interesting in the context of presentations. Audience members with PARCTABs
vote on the quality and pace of the material being covered by a presenter. The votes are
collected anonymously and displayed on the Liveboard. The board is visible to both the au-
dience and the presenter; thus everyone knows whether their colleagues are as bored or en-
tranced as they are. Without the PARCTAB listeners would have to interrupt the presentation
to ask the speaker to speed up, slow down, or move to another point.

1A tab-based remote pointing and annotation tool was demonstrated as part of the Xerox exhibit at Expo ’92
in Seville

25

7.3.3 Multi-tab Virtual Paper

Tabdraw is a multi-tab application that allows the tab screen to be used as if it were a piece of
scrap paper. Each PARCTAB participating in the application owns a piece of virtual paper
and can draw on it. The participants also have the option of seeing the drawings of their
colleagues by superimposing them on their own work. This scheme ensures that users “own”
the line segments they draw; no one else can erase them. As a result, many users can work
together in a coordinated fashion without impairing fair participation.

The shared drawing is generally defined by the room that people are in. A group in one
room will automatically obtain a separate drawing surface from that in another room. Al-
ternatively, a group might arrange to share a drawing regardless of location.

7.4 Remote Control

Television and stereo system remote-controls have popularized the notion of control at a dis-
tance. In fact so many pieces of consumer electronics have such controllers that one can now
buy universal remote controls that control many devices at the same time. A PARCTAB can
also act as a universal controller. Furthermore, it can command applications that tradition-
ally take their input from a keyboard or a mouse.

Since a tab can display arbitrary data, the controls available to a user can be changed
depending on context. (Commercial universal remote controllers, in contrast, tend to need
a large array of buttons.) Enabling the remote control application in an office may trigger a
tab to provide a control panel that adjusts lighting and temperature, whereas in a conference
room the interface might be biased toward presentation tools.

7.4.1 Program Controllers

During our experiments with group drawing and pointingtools it became clear that a PARCTAB

has some interesting control possibilities as a drawing interface for a drawing program. It
can make additional commands available without cluttering the main screen, and it can also
provide a more powerful set of commands than was available in the original program by
providing a single button that controls a sequence of low-level drawing primitives. If a pro-
gram is already intended for remote use and has a network interface, controlling it with a
PARCTAB is very easy.

7.4.2 X10 Remote Control

Another UbiquitousComputing project at Xerox PARC, the Responsive Environment Project
[10], has been exploring how environmental control can save energy during the day-to-day
operation of a building. The project had created servers that control power outlets through
a commercial system called X10 [2].

Because the servers controlling appliances in part of the building being studied by the
Responsive Environment project were already connected to the local area network, it was a
simple matter to build PARCTAB applications to control them.

7.5 Local Operation

The PARCTAB is near one extreme of a spectrum of possible devices ranging from the re-
mote terminal (devoid of function without its connection to the network) to the standalone

26

computer (capable of many operations without any communication links). The latest revi-
sion of the tab hardware has 128K of on-board memory, so that data and programs can be
downloaded through the IR link and executed in a stand-alone mode. Operating the tab in
this way frees a user from the IR network, but of course severely limits the tab’s function-
ality.

The storage capacity of a mobile device will probably always be small compared to the
expectations of its user. Consequently applications must take care to download only the most
relevant information. For example, if a user has unread electronic mail at the end of a work
day, the system might transfer the messages to the PARCTAB so that they could be read in
transit or at home. (Currently, all downloading of information and programs occurs under
the user’s control.)

8 EXPERIENCES WITH THE PARCTAB SYSTEM

The PARCTAB system has been in use since March 1993 and now serves a small community
of users. We have made a number of useful observations during this period and have begun
to understand its successes and failures.

8.1 The Experimental Network at PARC

PARC was a convenient test site for the PARCTAB system because installationwas very easy.
Before the project began every office already contained a workstation connected by an eth-
ernet. The hallways and common areas also had access to nearby workstations. It was easy
to install a communication cell in an office by using velcro to attach a transceiver to the ceil-
ing and then to run phone cable down a wall into a junction box. The junction box usually
rests on the floor under a desk and has a power cable, and connects to the RS232 port of the
workstation. Typically, the installation takes about 15 minutes.

Some users also installed cells in their homes. They already had ISDN lines, which con-
nect a home ethernet to the office network, and so a transceiver connected to a workstation
at home was effectively tied to the PARCTAB infrastructure.

The first PARCTAB system released in March ’93 consisted of 20 users and 25 cells.
The experience gained in this time enabled a second release in April ’94. The latter system
was somewhat larger with a community of about 41 users and 50 cells. It included many
improvements that enhanced the performance of the communication channel and the tabs’
perceived reliability.

For example, the original system relied on a central name-and-maintain service (see Sec-
tion 5.2) to route packets to tabs; when the service was unavailable the PARCTAB system
could not function. The new release has a distributed name service that uses a network mul-
ticast mechanism to determine the address of system components.

We discovered in the first release there were problems caused by high utilization of the
infrared network. High loads cause three problems: infrared packets are more likely to be
corrupted; transmit buffers in the transceiver overflow, causing packets to be dropped; and
the corrupted and dropped packets caused more retransmissions, increasing the load. The
high load exposed bugs in the system design and implementation such as race conditions
and badly-tuned retransmission policies.

To improve user’s confidence in the system, we had to increase its reliability and avail-
ability. This involved not only fixing bugs but also mundane improvements such as a low-

27

battery indicator for tabs. System components also needed mechanisms for self monitoring.
All the PARCTAB system processes now have control panels designed to provide informa-
tion in the event of a failure. We have also put new mechanisms in place to monitor and
maintain the IR-gateway and the agent processes.

8.2 Infrared Interference

The PARCTAB could not be used effectively in several rooms in our building because of IR
noise due to fluorescent lamps controlled by electronic ballasts. This is a waste of a unique
form of communication bandwidth. Unfortunately, electronic ballasts are slowly replacing
the older magnetic ballasts because they are more energy efficient. We found a considerable
variation in interference levels from lamps made by different manufacturers. Some produce
acceptable levels of IR, and it would be useful if lamp manufacturers were required to adhere
to a maximum limit for IR emissions.

Positioning of a room transceiver is also important. Installers should avoid direct sun-
light, that can change position throughout a day (and during the year), and proximity to flu-
orescent lamps and to obstructions on the ceiling. Transceivers in adjacent cells should be
positioned carefully so that their signals do not pass through doorway or interior windows
and cause interference.

8.3 Usage Data Measured from the PARCTAB System

Part of the benefit of building a real system has been the opportunity to study how a versatile
personal information-terminal might be used in advance of a commercial system. We stud-
ied the 1994 release of the tab system for three months to determine its use characteristics.
The participants all consented to automatic logging of system events.

We began recording two weeks after system deployment so that users could familiarize
themselves with the PARCTAB. To limit the data to a manageable quantity, we logged only
the following events: Interactive, Switch, Idle, and Missing2. Interactive occurs when a user
powers up a tab, Switch occurs when a user switches to a new application, Idle is generated
when a tab has not been used for 4 minutes, and Missing is a timeout event generated by the
system when the infrared network cannot detect a particular tab. Each event was recorded
along with a timestamp and cell location. In addition, there were two questionnaires given
out to our users, one at the outset of the tab use study and one at the close. This provided
contextual information, and information to interpret the logging data.

8.3.1 Which Applications were Popular?

The switch events can be used to determine the relative popularity of the various PARCTAB

applications. Figure 11 shows the percentage of invocations accounted for by each applica-
tion. Four were distinctly more popular than the rest: e-mail, weather, file browser, and the
loader. Possible implications of these results are discussed in Section 9.

8.3.2 How Long were Applications in Use?

Another way of looking at application popularity is to consider how long each application
was in use (see Figure 12). It should be noted that the total application interaction time is

2During the 3 month study some system processes died and were restarted causing some events not to be
logged. This results in minor, but conservative, inaccuracies in the reported statistics.

28

tab
mail

wea
the

r

tab
br

ow
se

tab
loa

de
r

tab
ico

n

un
iw

rit
e

am
i

un
ifl

as
h

tab
lea

rn
em

ail

tab
arb

itr
on

tab
dr

aw

ca
len

da
r

tab
clo

ck

tab
wor

ds
un

ix

un
idi

cta
te

ru
nn

ing

pu
zz

le

tab
ca

lc
tab

ta

tab
sy

nc
tra

ins

tab
ca

lib

tab
by

tun
es

tab
fil

ter
po

ng
0

1

2

3

4

5

6

7

8

9

10

11

12

P
er

ce
nt

 o
f

In
vo

ca
ti

on
s

Normalized Invocations (%)
Invocations (%)

Figure 11: Histogram showing the number of invocations for each application (not including
the shell or tshell) expressed as a percentage of the total invocations of these applications
during the test period. Normalized results only count one invocation per day per user to
remove distortions that might arise when users experiment with an application several times
during a brief period. Applications that might normally be invoked several times a day suffer
under this measure.

4871 minutes over 3 months (13 weeks) for 41 users. This amounts to only 119 minutes/user
or about 1.8 minutes/user/day (65 days, excluding weekends). From our logs the total num-
ber of application switches for all tabs throughout the study was 2996 and therefore the av-
erage interaction time was about 97 seconds.

The application popularity ranking is somewhat different from Figure 11. The e-mailer,
unistroke test and learn program, unistroke notetaker, file browser, and the loader are the
most long-lived applications. The weather program falls to 8th place (perhaps because it
only imparts a small amount of information at any one time). Meanwhile the note-taker
moves up to 3rd place – not surprising, as taking notes is by its nature a time-consuming
activity. It is interesting to observe that reading e-mail, browsing system files, and loading
data turn out to be the most used in both measurements.

This use pattern differed from the participants own expectations of use. Although they
expected to read e-mail, (four of the participants did not use e-mail on the tab at all, due to
incompatible mail systems), over half commented that they expected to use the tab primarily
as a calendar. It is also worth noting that according to user reports the e-mail program was
used to read e-mail much more than to send e-mail using Unistrokes. The Unistroke test and
learn programs appear in the ranking even though they are typically not activated very often;

29

users may spend a block of time running them when first acquiring the skill.

tab
mail

un
ifl

as
h

un
iw

rit
e

tab
br

ow
se

tab
lea

rn

tab
loa

de
r
em

ail

wea
the

r

tab
wor

ds

un
idi

cta
te am

i

tab
ico

n
un

ix

pu
zz

le

tab
dr

aw

tab
arb

itr
on

ca
len

da
r
tra

ins

tab
clo

ck

tab
ca

lc

tab
by

tun
es

tab
ta

tab
sy

nc

ru
nn

ing

tab
ca

lib

tab
fil

ter
po

ng
0

100

200

300

400
A

m
ou

nt
 o

f
us

e
(m

in
ut

es
)

Figure 12: Histogram showing the total interaction time by users for each application in the
tab system during the 3 month test period (not-including the shell, 1273 minutes, and the
tshell, 1081 minutes).

Graph 13 shows the percentage of application interactions that last less than a given time.
We have removed interactions of less than 10 seconds because users often turn a tab on and
then off immediately to confirm that it is working normally. From this graph we can see that
50% of interactions last less than 100 seconds (1.7 mins), 75% less than 230 seconds (3.8
mins) and 90% less than 500 seconds (8.3 mins). This supports our notion of the tab as a
device for “casual” interactions.

Figure 14 shows what fraction of users had their tabs turned on for various total periods
of time. The study group can be roughly divided into three user types. 7% (3 people) used
the tab for 360-480 minutes during the test (6.4 minutes/day). 15% (6 people) used it for
144-360 minutes (3.9 minutes/day) and 78% (32 people) used it for less than 144 minutes
in total (1.1 minutes/day). The average use time for the majority was very small, implying
their interactions were generally very brief.

8.3.3 Who Used the PARCTAB, How Long and Where?

Figure 15 shows interaction time for each user, subdivided according to location: in their
own office (black); in a common area such as a conference room, tea area or seminar room
(grey); or in a hall or another person’s office (white). Only 3 people used a tab primarily
(for more than 50% of their total interaction time) in somebody else’s office. Approximately
61% (25 people) of our community used the tab primarily in their own rooms, and 27% (11

30

0 100 200 300 400 500

Application Interaction Length (seconds)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 I

nt
er

ac
ti

on
s

Figure 13: Graph showing the percentage of application interactions that were under a given
time during the test period.

people) used it primarily in a common area. Interestingly enough, for each pattern of use
the preference was quite clear.

By pooling the results of Figure 15 we can determine that people used tabs in their own
offices 57% of the time, in a common area 32% of the time , and in another office 11% of the
time (see Figure 16). 7% of own-office interactions are in the presence of other tabs. 90%
of common area interactions and 85% of other-office interactions are also in this category.

The multiple-user applications, group drawing and remote pointing, were not available
for the duration of the use study. Group applications like this would have generated a much
higher network-load in the common areas, but are likely uses of a ubiquitous mobile device.

Figure 15 shows that there is not a typical use pattern among the study group. Our ques-
tionnaires showed that there were as many different expectations of the tab system as there
were participants in the study. For example, researchers developing applications on the tab
that expected to use the tab a great deal did not necessarily have the largest interactions times,
even though they had to use the tab for their daily work. In contrast, some researchers who
did not expect to use the tab found that visitor demonstrations of the device added signifi-
cantly to their total usage time.

These results are important for overall system design because multiple tabs interacting
in the same area have a strong impact on the available bandwidth. The PARCTAB system
needs to be able to handle a usage pattern in which at least 42% of all interactions occur
with multiple tabs present.

31

0 24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

40
8

43
2

45
6

48
0

Minutes of Use

0

1

2

3

4

5

6

7

8

N
um

be
r

of
 U

se
rs

Figure 14: Histogram showing the number of users against their total interaction time di-
vided into 20 equal divisions.

8.4 Discussion

Although the previous graphs give an indication of the way the tab was used it is important
to acknowledge the limitations of this study in representing the use of the tab as a consumer
item. First, the the user group was too small for statistically significant results. Second, the
system was still under development and the applications were not fully supported. Further-
more, participants in the study were not customers but rather laboratory staff using the tab
as a prototype. It was up to them to invent ways to use the tab, develop new applications
and create ways to incorporate the tab into established work patterns. As a result, we must
qualify the numbers with anecdotal evidence and further discussion of the ways people used
the tab. Some of these remarks are listed below:

Rich Gold: does not see any value in using a tab in his own office because a powerful
workstation is at hand.

John Ellis: prefers to use the tab in his own office to read his e-mail so that he does not
have to rearrange the windows on his workstation screen.

Dan Swinehart: found the tab system had a long response time, but found that the tab
system was faster than Mosaic for finding the definition of a word, .

Helen Davis: has used the email application and Unistrokes to take notes during semi-
nars and then mailed them to herself.

A number of people found the PARCTAB too heavy or awkward to wear.
Two women tab users (Karin Petersen and Nancy Freige) remarked that the design of the

belt clip was oriented towards a particular clothing style. For example, not all outfits include
belts, and furthermore not all belts work well with clip on devices. Doug Terry also found

32

Users

100

200

300

400

A
m

ou
nt

 o
f

us
e

(m
in

ut
es

)

In hall or office of another person.
In common area.
In own office.

Figure 15: Histogram showing the total interaction time for each user in seconds split be-
tween three location types: a user’s own office, a common area, a hall or another person’s
office.

the tab clip inadequate for his use. Instead he used a small zippered nylon and (infrared
transparent) fishnet pouch to hold a tab so that it could be attached to his belt and continue
to report his location.

A researcher who preferred to remain anonymous commented on the difficulties of build-
ing new applications in Modula-3: ‘I don’t want to say anything against Modula-3 but if I
have to learn a new language at the same time as trying to program a new [computer] I may
not get much done.’

The ease of reading text on the small screen surprised most of the participants in the use
study. At the beginning of the study we found almost 1/2 of the participants had commented
that because of the low resolution of the screen they did not intend to read longer files.

As the list above indicates, it is difficult to suggest a ‘typical’ use of the PARCTAB The
PARCTAB system was an experiment that many people volunteered to participate in. It was
shaped by their own ideas, needs and contributions. A direct consequence of building a sys-
tem that can be used by a community is that it is possible to gain understanding of the real
problems (see Section 9), issues to be addressed, and activities that need to be supported.

8.5 Research at other Sites

To gain more general experience we gave the tab system (including tabs, transceivers, and
software) to a number of other research departments. The largest of these sites was the
Rank Xerox Research Centre (Cambridge, England) with 12 transceivers and 10 PARCTABs.
Flinders University (Adelaide, Australia) University of Washington, University of Toronto
and Olivetti Research Ltd (Cambridge, England) also received small numbers of PARCTAB

33

In Own Office
(57%)

In Common Area
(32%)

Other
(11%)

0

500

1000

1500

2000

2500

A
m

ou
nt

 o
f

us
e

(m
in

ut
es

)
tab in use alone (In Own Office)
tab in use alone (In Common Area)
tab in use alone (Other)
tab in use with other tabs

Figure 16: Histogram showing the total interaction time by all users for each of the three
general areas: a user’s own office, a common area, a hall or another person’s office.

system components for their own research. RXRC produced a number of applications (see
Section 7), and the University of Toronto now uses tabs to control the equipment in its “telep-
resence” room.

9 CONCLUSION

The PARCTAB system enables a unique set of applications that have used communication
and context to enhance their operation. By designing a system and deployingit, we were able
to gain some insight into the benefits and problems faced by mobile systems. The following
sections draw some conclusions.

9.1 Design Perspective

The PARCTAB architecture depends on small-cell wireless communication. It thus com-
bines portability with information about context. A downside of this approach was that the
PARCTAB was not very useful out of contact with the network. Some of our users were dis-
satisfied that the tab had only very limited use when disconnected from the network. Perhaps
the real value of a PDA comes from both connected and disconnected operation. One with-
out the other leaves them dissatisfied.

Our system design was based on a distributed architecture containing many components.
Although each component was relatively simple the complete system presented a level of
complexity that made it difficult to debug. We learned to remove as many points of failure
as possible to allow users to understand what was going on.

34

9.2 Bandwidth Limitations

One of our early design assumptions was that a 19.2k baud link was adequate for building
the PARCTAB system. If users do not often share cells or do not, on average, operate their
PARCTABs at the same time, the system can usually respond within 1 or 2 seconds. In meet-
ings, however, these assumptions seldom hold true. Users tend to operate tabs at the begin-
ning of meetings, at short breaks and perhaps when they are bored, resulting in synchronized
use and poor performance.

We now recognize that such systems have to be engineered to deal with the maximum
congestion that can result from the maximum number of mobile units in a room. Figures
based on average usage patterns do not justify cutting corners.

9.3 Characteristics of User Generated Traffic

Another early design assumption was that applications would have repeating usage patterns
of the form 1) event 2) screen update 3) delay, with the delay caused by the time it takes a
user to read the screen. However the Unistroke interface changed this pattern. A Unistroke
writer can make several strokes per second. In combination with other Unistroke traffic,
this can generate a load greater than the IR network was designed to handle. As a result, we
have begun work on improving the partitioning of applications between the PARCTAB and
the rest of the system. The Unistroke recognizer has recently been ported to the PARCTAB

firmware, allowing us to send packets of characters rather than a sequence of styluspositions.
This approach uses significantly less bandwidth in both directions and will be included in a
future PARCTAB release. Display keyboards could work the same way.

The largest impediment for people using Unistrokes was the slow response-time of the
system when displaying a character after each stroke of the stylus. Many of the participants
who had learnt Unistrokes, claimed to be able to write faster than the system could keep up.
All of those who learnt Unistrokes felt that it was a superior form of text input.

9.4 Factors Affecting Acceptance

Whether or not a tab is adopted in the workplace turns out to depend on many factors: among
them size, appearance, convenience, peer pressure, application types, and critical mass of
applications. People, in general, have well established work habits that are a barrier to learn-
ing a new system. Applications that solve a real problem are however compelling, and a
diversity of application type makes the tab a solution to many problems.

It has become clear that changing the nature of a single characteristic can tip the balance
between acceptance and rejection of the device e.g., the design of a suitable belt/clothes clip.
Small changes in design can have large effects and this makes it difficult to make predictions.
Building a system intended for use is the only way to really find out.

We have discovered how difficult it can be to persuade people to make changes to their
daily routine in order use a device like the PARCTAB. Furthermore, an individual’s style of
dress has a significant impact on whether a tab can be easily attached and worn like a pager.
One user’s tab fell off a belt in a parking lot, damaging the device, and making the user less
willing to carry it.

Many people expressed an interest in a system that could be used both inside and outside
the building, and if this had been the case, they might have adopted it in more readily. It is
clear that a conventional radio broadcast scheme would allow greater mobility, but at the

35

expense of bandwidth and the lack of context. A more comprehensive system might use a
combination of nano-cellular communications for in-buildinguse and a packet-radio scheme
for outside use.

There were two important aspects of tab use in the CSL study that were demonstrated
by the logging data. First, the brief period that applications were used (50% were under 100
seconds), and second, the generally infrequent usage-pattern.

Given that the typical behavior is of short user-interaction-times, we might be able to
better support a user’s needs by supplying more casual interfaces that summarize data on
the tab top-level screen (e.g., time, weather, amount of mail to read etc), enabling a user to
retrieve information at a glance. Perhaps icons that change state to represent the activity
of their underlying applications would address this issue, replacing the desktop metaphor
currently in use by a wrist-watch metaphor.

The total interaction-time combined for all tabs was not very large. This is as much a
reflection on the context of use as any inherent difficulties with the tab. The researchers
and support staff participating in this experiment work in a computer-saturated environment.
They are never far from a workstation, and apart from attending meetings, their work prac-
tices typically do not rely on being mobile (see Figure 16, percentage of time spent in an
office). This suggests that further work for integrating the tab into the office environment
needs to be considered, for example, using the tab as another computer monitor. But it also
suggests that in a manufacturing environment, or a hospital, tabs might support established
mobile work-practices.

It should also be noted that the tab system is a prototype and is not supported to the same
extent as an established product (e.g., no user manuals). In this case study, the users are par-
ticipating in the development and therefore it is more appropriate to think of them as partic-
ipants rather than users.

In the near future, a device capable of performing the PARCTAB’s functions could be
made about one third the thickness and one third the weight of the current version (3-4 mm
thick and perhaps 70 grams). This may further encourage its use.

9.5 Application Development

We set out from the start to encourage the user community to become involved in writing
applications. The original Modula-3 programming environment, although a state-of-the-art
approach to building systems, was unfamiliar to many of the users. In some cases learn-
ing it was too much trouble for producing a relatively simple application. In addition, the
compiler created large binaries (often greater than 3MB for each application), imposing a
significant load on machine resources when many applications were active. Making it pos-
sible to write applications in Tcl/Tk and Hypercard was significant in broadening the interest
of application developers.

9.6 Importance of User Interface

An innovative part of building the PARCTAB system has been the design of user interfaces
that are suited to a small screen e.g., elision and Unistrokes. The latter is a powerful tech-
nique that can be used with pen-based computers of any size.

The design of the PARCTAB packaging was clearly successful. In particular, our users
liked a design that was adapted to either right or left handed people. It was also clear that

36

three physical buttonsusually provided an unambiguousmode of use. Althoughit was tempt-
ing to design the user interface with more buttons, enforced simplicity has turned out to be
a bonus.

9.7 Popular Applications

Our system provided many programs that could be used in the work environment. It is in-
teresting to consider the four most commonly invoked. In first place was the electronic mail
reader, providing access to e-mail that is normally only available at a workstation. Perhaps
this is not surprising given that the study was carried out at a computer-science research lab-
oratory. However, electronic mail is becoming more popular in the business community and
this result might be significant in predicting a future market.

The weather program scored second highest. It is possible this shows an inherent fas-
cination with weather, or the program may just be good demo-ware. We hope that this in-
dicates a deeper interest in information that is up-to-date and easily accessed. In that case,
a mobile interface to the World Wide Web or other information services might prove com-
pelling.

In third place was the file browser, providing access to text and command files stored in
the Unix Network Filing System. Since the entire study group works almost entirely with
electronic documents which are available on-line, this is a likely result. Finally, in fourth
place was the tab loader, which allows users to store information in the tab’s local memory
and use it outside the infrared network. It is not surprising it has also been popular.

Although the unistroke notetaker was not invoked very often, it accounted for a signif-
icant chunk of total tab usage. It is possible that note-taking could become a heavily-used
application, especially if local processing of unistrokes yields the expected improvements
in performance.

Of the remaining applications there is one result that appears to be out of place. The
PARCTAB calendar/diary appeared mid-way through both the popularity and runtime re-
sults. In the initial questionnaire all but two of the users had stated that they intended to use
the calendar manager regularly. Although there was some difficulty with the compatibil-
ity of electronic calendars in use, 80% of the participants could use the appropriate calendar
manager on the tab. Given that office environments have schedules that involve many meet-
ings and numerous visitors, this result seems low. We have found, however, that users often
have traditional solutions to this problem in place (e.g., pocket-book diaries). New solutions
that are as good, or only marginally better (such as tab access to an on-line calendar) are not
easily adopted.

9.8 System Benefits

One important contributionof the PARCTAB system has been the experimental infrastructure
that allows users to prototype new application ideas. The system has been something of a
catalyst in generating new ideas in the area of Ubiquitous Computing and has inspired novel
applications. Because the infrastructure is easily assembled and can be exported to other test
sites, we have also had the benefit of stimulating other research.

37

9.9 Future Work

Many system issues still need to be explored, for example, how to resolve conflicts during
disconnected operation when related information has changed in both the mobile and the
fixed part of the system [7; 35; 6]. Another area that needs exploring is how to partition
system functionality across a wireless link with the aim of reducing communication latency.
An extension of the existing work that would allow us to make better use of system context,
is the design of a mechanism for the precise location of objects in a building. Ubiquitous
computing could take advantage of precise location information: knowing which screen a
user is currently looking at, for example, is invaluable when deciding how to present urgent
information. Finally, the whole area of miniature user-interface research deserves further
study and has the potential for many more innovations.

Ubiquitous computing has been the main inspiration for the PARCTAB project. The use
of this system has allowed us to study context-sensitive applications. These prototype appli-
cations have demonstrated the potential for innovation in this area. In the future we expect
to continue to carry out research with the PARCTAB, and also other hardware and software
that will help define the future of ubiquitous computing. Our experience with the PARCTAB

systems look very promising and brings us a step closer to realizing that future.

ACKNOWLEDGMENTS

We wish to thank the many summer interns that have contributed to this project and made
it fun to work on: Michael Tso, Nina Bhatti, Angie Hinrichs, David Maltz, Maria Okasaki,
and George Fitzmaurice. We also wish to thank: Jennifer Collins and Sonos Models for
facilitating the PARCTAB packaging; Bill Buxton (UT) for his advice concerning UI de-
sign; Terri Watson, Berry Kercheval and Ron Frederick for developing novel applications;
Natalie Jeremijenko for collecting and processing results from the tab usage experiment;
Olivetti Research Ltd (ORL) and Andy Hopper for collaborating with us while developing
the communication hardware; Brian Bershad (UW), Craig Mudge(Flinders) and Mike Flynn
for their keen advice and collaboration. Finally, we wish to thank and acknowledge Mik
Lamming for his original contributions and support during the lifetime of the project.

References

[1] Norman Adams, Rich Gold, Bill N. Schilit, Michael Tso, and Roy Want. An infrared
network for mobile computers. In Proceedings USENIX Symposium on Mobile &
Location-independent Computing, pages 41–52. USENIX Association, August 1993.

[2] Jeff Bachiochi. X-10 interfacing with plix. Circuit Cellular INK, pages 74–79,
Oct/Nov. 1992.

[3] Bill Buxton. Living in augmented reality: Ubiquitous media and reactive environ-
ments. To appear in CACM, 1995.

[4] William Buxton and Tom Moran. EuroPARC’s Integrated interactive intermedia facil-
ity (iiif): early experiences. North-Holland, 1990.

[5] George Calhoun. Digital Cellular Radio. Artech House Inc, 1988.

38

[6] A. Demers D. Terry, K. Petersen, M. Spreitzer, , M.M. Theimer, and B. Welch. Ses-
sion guarantees for weakly-consistent replicated data. In Proc. 3rd International Con-
ference on Parallel and Distributed Information Systems, pages 140–149, September
1994.

[7] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M.M. Theimer, and B. Welch. The
bayou architecture: Support for data sharing among mobile users. In Proceedings
Workshop on Mobile Computing Systems and Applications. IEEE, December 1994.

[8] Alan Demers, Scott Elrod, Christopher Kantarjiev, and Edward Richley. A nano-
cellular local area network using near-field rf coupling. In Proceedings of Virginia
Tech’s Fourth Symposium on Wireless Personal Communications, pages 10.1–10.16,
June 1994.

[9] Scott Elrod, Richard Bruce, Rich Gold, David Goldberg, Frank Halasz, William
Janssen, David Lee, Kim McCall, Elin Pedersen, Ken Pier, John Tang, and Brent
Welch. Liveboard: A large interactive display supporting group meetings, presenta-
tions and remote collaboration. In Proc. of the Conference on Computer Human Inter-
action (CHI), pages 599–607, May 1992.

[10] Scott Elrod, Gene Hall, Rick Costanza, Michael Dixon, and Jim des Rivieres. Respon-
sive office environments. CACM, 36(7):84–85, July 1993. In Special Issue, Computer-
Augmented Environments.

[11] N. Fishman and M.S. Mazer. Experience in deploying an active badge system. In
Proc. of IEEE Globecom Workshop on Networking of Personal Communications Ap-
plications, December 1992.

[12] Jim Fulton and Chris Kent Kantarjiev. An update on low bandwidth X (LBX). Tech-
nical Report CSL-93-2, Xerox Palo Alto Research Center, February 1993.

[13] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative
filtering to weave an information tapestry. CACM, 35(12):61–70, Dec 1992.

[14] David Goldberg and Cate Richardson. Touch typing with a stylus. In Proc. Conference
on Human Factors in Computing Systems (INTERCHI), pages 80–87. ACM/SigCHI,
Apr 1993.

[15] Andy Harter and Andy Hopper. A distributed location system for the active office.
IEEE Network, pages 62–70, January/February 1994.

[16] Oliver Jones. Introduction to the X Window System. Prentice Hall, 1989.

[17] Christopher Kent Kantarjiev, A. Demers, R.T. Krivacic R. Frederick, and M. Weiser.
Experiences with X in a wireless environment. In Proceedings USENIX Symposium
on Mobile & Location-independentComputing, pages 117–128. USENIX Association,
August 1993.

39

[18] M. Lamming. Towards future personalised information environments. In FRIEND21
Symposium on Next Generation Human Interfaces, Tokyo Japan, 1994. Also available
as RXRC TR 94-104, 61 Regent St., Cambridge, UK.

[19] M. Lamming, P. Brown, K. Carter, M. Eldridge, M. Flynn, G. Louie, P. Robinson, and
A. Sellen. The design of a human memory prosthesis. Computer Journal, 37(3):153–
163, 1994.

[20] M. Lamming and M. Flynn. Forget-me-not: intimate computing in support of human
memory. In FRIEND21 Symposium on Next Generation Human Interfaces, Tokyo
Japan, 1994. Also available as RXRC TR 94-103, 61 Regent St., Cambridge, UK.

[21] Robert Langreth. Total recall. Popular Science, pages 46–82, February 1995.

[22] Greg Nelson. System Programming with Modula-3. Series in Innovative Technology.
Prentice Hall, 1991.

[23] William Newman and Mik Lamming. Interactive System Design. Addison-Wesley,
1995.

[24] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[25] Karin Petersen. Tcl/tk for a personal digital assistant. In Proceedings of the USENIX
Symposium on Very High Level Languages (VHLL), pages 41–56, Santa Fe, New Mex-
ico, October 26-28 1994. USENIX Association.

[26] Ken Pier and James A. Landay. Issues for location-independent interfaces. In Xerox
Parc Blue&White P92-00159, December 1992.

[27] Bill N. Schilit, Norman Adams, Rich Gold, Michael Tso, and Roy Want. The PARCTAB

mobile computing system. In Proceedings Fourth Workshop on WorkstationOperating
Systems (WWOS-IV), pages 34–39. IEEE, October 1993.

[28] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing applications.
In Proceedings Workshop on Mobile Computing Systems and Applications. IEEE, De-
cember 1994.

[29] Bill N. Schilit and Marvin M. Theimer. Disseminating active map information to mo-
bile hosts. IEEE Network, pages 22–32, September/October 1994.

[30] Bill N. Schilit, Marvin M. Theimer, and Brent B. Welch. Customizing mobile appli-
cation. In Proceedings USENIX Symposium on Mobile & Location-Independent Com-
puting, pages 129–138. USENIX Association, August 1993.

[31] Mike Spreitzer and Marvin Theimer. Providing location information in a ubiquitous
computing environment. In Proceedings of the Fourteenth ACM Symposium on Op-
erating System Principles, pages 270–283, Asheville, NC, December 1993. SIGOPS,
ACM.

40

[32] Mike Spreitzer and Marvin Theimer. Scalable, secure, mobile computing with location
information. CACM, 36(7):27, July 1993. In Special Issue, Computer-Augmented
Environments.

[33] Mike Spreitzer and Marvin Theimer. Architectural considerations for scalable, secure,
mobile computing with location information. In Proc. 14th Intl. Conf. on Distributed
Computing Systems, pages 29–38. IEEE, June 1994.

[34] Andrew Tanenbaum. Computer Networks. Prentice Hall, 1981.

[35] M.M. Theimer, A. Demers, K. Petersen, M. Spreitzer, D. Terry, and B. Welch. Dealing
with tentative data values in disconnected work groups. In Proceedings Workshop on
Mobile Computing Systems and Applications. IEEE, December 1994.

[36] M. Tokoro and K. Tamaru. Acknowledging ethernet. Compcon, pages 320–325, Oc-
tober 1977.

[37] Roy Want and Andy Hopper. Active badges and personal interactive computing ob-
jects. IEEE Transactions on Consumer Electronics, 38(1):10–20, Feb 1992.

[38] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The active badge
location system. ACM Transactions on Information Systems, 10(1):91–102, Jan 1992.

[39] Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94–104,
September 1991.

[40] Mark Weiser. Hot topic: Ubiquitous computing. IEEE Computer, pages 71–72, Octo-
ber 1993.

[41] Mark Weiser. Some computer science issues in ubiquitous computing. CACM,
36(7):74–83, July 1993. In Special Issue, Computer-Augmented Environments.

[42] Mark Weiser. The world is not a desktop. Interactions, pages 7–8, January 1994.

[43] Mark Weiser, Alan Demers, Brent Welch, and Scott Shenkar. Scheduling for reduced
CPU energy. In Operating System Design and Implementation (OSDI), Monterey, CA,
1994.

41

Contents

1 INTRODUCTION 1

2 UBIQUITOUS COMPUTING 2
2.1 The Ubiquitous Computing Philosophy : : : : : : : : : : : : : : : : : : 2
2.2 A Ubiquitous Computing Infrastructure : : : : : : : : : : : : : : : : : : 3
2.3 Ubiquitous Computing Experiments at PARC : : : : : : : : : : : : : : : 3

3 PARCTAB SYSTEM DESIGN 4
3.1 PARCTAB Mobile Hardware : 4

3.1.1 Packaging : 5
3.1.2 Display and Control Characteristics : : : : : : : : : : : : : : : : 5
3.1.3 Power Management : 6

3.2 PARCTAB Communication : 6
3.2.1 Transceiver Design : 7
3.2.2 Local Area Network Interface : : : : : : : : : : : : : : : : : : : 8
3.2.3 Transmission Control : 8
3.2.4 Reliability and Interference : 9

4 USER-INTERFACE DESIGN FOR PALM-SIZED COMPUTERS 9
4.1 Buttons vs. Touch Screen : 9
4.2 Spurious Event Prevention : 10
4.3 Text Display : 10
4.4 Text Entry : 11

4.4.1 Keyboard Entry : 11
4.4.2 Unistrokes : 11

4.5 Option Selection : 12
4.5.1 Text and Icon menus : 12
4.5.2 Scrolling Lists : 12
4.5.3 Elision and Incremental Searches : : : : : : : : : : : : : : : : : 13

5 PARCTAB SYSTEM ARCHITECTURE 14
5.1 PARCTAB Processing Capabilities : 14

5.1.1 Tab Remote Procedure Call Mechanism : : : : : : : : : : : : : : 15
5.1.2 PARCTAB Events : 16

5.2 Infrared Gateway : 17
5.3 Tab Agent : 17
5.4 Shell and Application Control : 18
5.5 Example of System Operation : 19

6 DEVELOPING SYSTEM AND APPLICATION COMPONENTS 20
6.1 Modula-3 : 20

6.1.1 Modula-3 and System Development : : : : : : : : : : : : : : : : 20
6.1.2 Modula-3 and Application Writers : : : : : : : : : : : : : : : : : 20

6.2 Code Libraries : 21

i

6.3 The Tshell and Tcl : 21
6.4 The MacTabbit system : 22

7 A CLASSIFICATION OF PARCTAB APPLICATIONS 22
7.1 Information Access : 23
7.2 Communication : 24

7.2.1 Locator and Pager Operation : 24
7.2.2 Media Applications : 24

7.3 Computer Supported Collaboration : 25
7.3.1 Group Pointing and Annotation : : : : : : : : : : : : : : : : : : 25
7.3.2 Voting : 25
7.3.3 Multi-tab Virtual Paper : 25

7.4 Remote Control : 26
7.4.1 Program Controllers : 26
7.4.2 X10 Remote Control : 26

7.5 Local Operation : 26

8 EXPERIENCES WITH THE PARCTAB SYSTEM 27
8.1 The Experimental Network at PARC : 27
8.2 Infrared Interference : 28
8.3 Usage Data Measured from the PARCTAB System : : : : : : : : : : : : : 28

8.3.1 Which Applications were Popular? : : : : : : : : : : : : : : : : 28
8.3.2 How Long were Applications in Use? : : : : : : : : : : : : : : : 28
8.3.3 Who Used the PARCTAB, How Long and Where? : : : : : : : : : 30

8.4 Discussion : 32
8.5 Research at other Sites : 33

9 CONCLUSION 34
9.1 Design Perspective : 34
9.2 Bandwidth Limitations : 35
9.3 Characteristics of User Generated Traffic : : : : : : : : : : : : : : : : : 35
9.4 Factors Affecting Acceptance : 35
9.5 Application Development : 36
9.6 Importance of User Interface : 36
9.7 Popular Applications : 37
9.8 System Benefits : 37
9.9 Future Work : 38

ii

List of Figures

1 The PARCTAB mobile hardware : 5
2 The PARCTAB transceiver : 7
3 Format of the data fields for a link-layer IR packet (lengths in bytes). : : : 8
4 The Unistroke alphabet : 11
5 A screen from the PARCTAB Arbitron application : : : : : : : : : : : : : 12
6 A screen from the PARCTAB locator application : : : : : : : : : : : : : : 13
7 The PARCTAB system architecture : 15
8 Format of IR packet data payload as used by the request/reply protocol (lengths

in bytes) : 15
9 The path taken by a T-RPC call made from an application to a tab. : : : : : 16
10 The top-level screen presented by the default Shell : : : : : : : : : : : : : 18
11 Histogram showing the number of invocations for each application (not in-

cluding the shell or tshell) expressed as a percentage of the total invoca-
tions of these applications during the test period. Normalized results only
count one invocation per day per user to remove distortions that might arise
when users experiment with an application several times during a brief pe-
riod. Applications that might normally be invoked several times a day suffer
under this measure. : 29

12 Histogram showing the total interaction time by users for each application in
the tab system during the 3 month test period (not-including the shell, 1273
minutes, and the tshell, 1081 minutes). : : : : : : : : : : : : : : : : : : : 30

13 Graph showing the percentage of application interactions that were under a
given time during the test period. : 31

14 Histogram showing the number of users against their total interaction time
divided into 20 equal divisions. : 32

15 Histogram showing the total interaction time for each user in seconds split
between three location types: a user’s own office, a common area, a hall or
another person’s office. : 33

16 Histogram showing the total interaction time by all users for each of the three
general areas: a user’s own office, a common area, a hall or another person’s
office. : 34

iii

